Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity.

نویسندگان

  • P B Allen
  • V Zachariou
  • P Svenningsson
  • A C Lepore
  • D Centonze
  • C Costa
  • S Rossi
  • G Bender
  • G Chen
  • J Feng
  • G L Snyder
  • G Bernardi
  • E J Nestler
  • Z Yan
  • P Calabresi
  • P Greengard
چکیده

Protein phosphatase 1 plays a major role in the governance of excitatory synaptic activity, and is subject to control via the neuromodulatory actions of dopamine. Mechanisms involved in regulating protein phosphatase 1 activity include interactions with the structurally related cytoskeletal elements spinophilin and neurabin, synaptic scaffolding proteins that are highly enriched in dendritic spines. The requirement for these proteins in dopamine-related neuromodulation was tested using knockout mice. Dopamine D1-mediated regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor activity was deficient in both striatal and prefrontal cortical neurons from neurabin knockout mice; in spinophilin knockout mice this deficit was manifest only in striatal neurons. At corticostriatal synapses long-term potentiation was deficient in neurabin knockout mice, but not in spinophilin knockout mice, and was rescued by a D1 receptor agonist. In contrast, long-term depression was deficient in spinophilin knockout mice but not in neurabin knockout mice, and was rescued by D2 receptor activation. Spontaneous excitatory post-synaptic current frequency was increased in neurabin knockout mice, but not in spinophilin knockout mice, and this effect was normalized by D2 receptor agonist application. Both knockout strains displayed increased induction of GluR1 Ser(845) phosphorylation in response to D1 receptor stimulation in slices, and also displayed enhanced locomotor activation in response to cocaine administration. These effects could be dissociated from cocaine reward, which was enhanced only in spinophilin knockout mice, and was accompanied by increased immediate early gene induction. These data establish a requirement for synaptic scaffolding in dopamine-mediated responses, and further indicate that spinophilin and neurabin play distinct roles in dopaminergic signal transduction and psychostimulant response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for spinophilin-neurabin receptor interaction.

Neurabin and spinophilin are neuronal scaffolding proteins that play important roles in the regulation of synaptic transmission through their ability to target protein phosphatase 1 (PP1) to dendritic spines where PP1 dephosphorylates and inactivates glutamate receptors. However, thus far, it is still unknown how neurabin and spinophilin themselves are targeted to these membrane receptors. Spin...

متن کامل

Subcellular distribution of neurabin immunolabeling in primate prefrontal cortex: comparison with spinophilin.

Prefrontal cortical functioning depends on dopaminergic neurotransmission, which in turn depends on a complex signal transduction pathway including protein phosphatase-1 (PP1). Targeted localization of PP1 by the scaffolding proteins, spinophilin and neurabin, is critical for dopaminergic modulation of glutamate neurotransmission. In this study, we report the preparation of an antiserum to neur...

متن کامل

Age-dependent differential regulation of anxiety- and depression-related behaviors by neurabin and spinophilin

Affective disorders impact nearly 10% of the adult population in the United States in a given year. Synaptic dysfunction has recently emerged as a key neurobiological mechanism underlying affective disorders such as anxiety and depression. In this study, we investigate the potential role of two synaptic scaffolding proteins, neurabin and spinophilin, in regulating anxiety- and depression-relate...

متن کامل

Phosphorylation of spinophilin modulates its interaction with actin filaments.

Spinophilin is a protein phosphatase 1 (PP1)- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We report that spinophilin is phosphorylated in vitro by protein kinase A (PKA). Phosphorylation of spinophilin was stimulated by treatment of neostriatal neurons with a dopamine D1 receptor agonist or with forskolin, consistent with spinophilin...

متن کامل

Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction

Signaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD) are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1), are highly promiscuous and obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience

دوره 140 3  شماره 

صفحات  -

تاریخ انتشار 2006